Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Matthews Lab
Search
Search
Appearance
Log in
Personal tools
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
P2p mobile carriers
(section)
Page
Discussion
British English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
= 2. How authentication is done in mobile networks = In the 2G/3G/4G/5G networks, authentication follows a challenge-response protocol using symmetric keys to encrypt challenges [aka-protocol]. Both the MS and the MsC have a copy of the same symmetric key and hence are able to encrypt the same challenge. To authenticate a mobile user, the MsC generates a large random number to use as a challenge and sends it to the mobile user via the base station. The MS encrypts the challenge using the secret key stored in their e/U/SIM card, and returns the response to the MsC. If the response is a correct encryption of the challenge under the right key, the MsC knows the mobile device must be in possession of the secret key and hence is allowed to join the network. The final stage involves generating a new key pair that is used for encrypting voice calls, SMS, and other commands sent over the air waves. This is done by inputting the challenge and secret key into the right algorithm β the type of which has been previously negotiated between the MS and MsC. If no algorithm is supported between them, then the MS cannot proceed with the connection. [[File:P2p mobile carriers 1.gif|thumb]] All the different generation mobile networks follow the same basic protocol for authentication, however more sophisticated changes were made with 3G to allow the mobile device to authenticate the network, and various improvements were made on 4G and 5G to improve privacy. Different generation networks have standardised algorithms for use with authentication and ciphering, but only ciphering must support specific routines, an operator can do authentication however they like. <span id="a-sketch-for-a-naive-protocol"></span>
Summary:
Please note that all contributions to Matthews Lab may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Matthews Lab:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)